Tetrahedron 65 (2009) 7630-7636

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of (\pm) -4'-ethynyl-5',5'-difluoro-2',3'-dehydro-3'-deoxy- carbocyclic thymidine: a difluoromethylidene analogue of promising anti-HIV agent Ed4T

Hiroki Kumamoto^{a,*}, Kazuhiro Haraguchi^a, Mayumi Ida^a, Kazuo T. Nakamura^a, Yasuyuki Kitagawa^a, Takayuki Hamasaki^b, Masanori Baba^b, Satoko Shimbara Matsubayashi^a, Hiromichi Tanaka^a

^a School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
 ^b Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan

ARTICLE INFO

Article history: Received 7 April 2009 Received in revised form 25 June 2009 Accepted 25 June 2009 Available online 30 June 2009

Keywords: Carbocyclic nucleoside d4T gem-Difluoromethylidene Mitsunobu reaction

ABSTRACT

Synthesis of (\pm) -4'-ethynyl-5',5'-difluoro-2',3'-dehydro-3'-deoxy-carbocyclic-thymidine (**8**) was carried out. The difluoromethylylidene group of **8** was constructed by the electrophilic fluorination to the cyclopentenone **11** by using Selectfluor[®]. Introduction of thymine base was investigated based on the Mitsunobu reaction by employing cyclopentenyl allyl alcohols variously substituted at the 4-position. It was found the 4-methoxycarbonyl derivative **14** gave the highest selectivity both in terms of regio- and stereochemistry.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The finding that thymidine derivatives having 4'-azido (1),¹ 4'cyano (2),² and 4'-ethynyl (3)³ substituents show significant inhibitory activity against HIV proliferation stimulated the synthesis of 4'-substituted thymidine analogues (Fig. 1). As a result of our studies carried out along this line, the 4'-ethynyl derivative (Ed4T, **5**)⁴ of stavudine (d4T, **4**) was found to be a promising anti-HIV agent: more anti-HIV active than d4T; has a lower cellular and mitochondrial toxicity than d4T;^{4a,b} active against many drug-resistant HIV-1 strains, in which the reverse transcriptase (RT) bears amino acid substitutions such as M184V (3TC-resistant) and A62V/V75I/F77L/ F116Y/Q151M (multidrug-resistant);^{4c} its 5'-triphosphate showed much less inhibitory effects toward major host DNA polymerases.^{4d} This compound (**5**) has recently entered into Phase I clinical trial.

As a part of the structure–activity relationship studies of **5**, synthesis of the carbocyclic (**6**)⁵ and the 4'-thio (**7**)⁶ analogues has also been carried out. In the present study, we designed and synthesized **8**, in which the furanose ring oxygen of **5** is replaced with a geminal-difluoromethylidene (CF₂) group, because the CF₂ group has been suggested to work as an isopolar and isosteric substituent for oxygen.⁷

Figure 1. Compounds 1-8.

2. Results and discussion

2.1. Preparation of allylalcohol (9)

For the preparation of the *gem*-difluoro carbocyclic unit **9**, the cyclopentenol **10** reported from our laboratory,⁵ was selected (Scheme 1). Oxidation of **10** by using PDC gave the cyclopentenone

^{*} Corresponding author. Tel.: +81 3 3784 8187; fax: +81 3 3784 8252. *E-mail address:* kumamoto@pharm.showa-u.ac.jp (H. Kumamoto).

^{0040-4020/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.06.095

11. To introduce the fluorine atom, the ketone **10** was first converted to the corresponding silvl enol ether, and then reacted with Selectfluor[®].⁸ This procedure gave the monofluorinated ketone **12** in 82% yield. Simply by repeating this procedure for 12, the difluorocyclopentenone 13 was obtained in moderate vield. It was fortunate that the Luche reduction⁹ of **13** proceeded stereoselectively to give the alcohol **14** as the sole product. The stereochemistry of 14 was confirmed by NOE experiments.¹⁰

Scheme 1. Reagents and conditions: (a) PDC, CH₂Cl₂ (78%); (b) (i) TMSCl, Li/HMDS, THF, -78 °C, (ii) Selectfluor®, MeCN; (c) (i) TMSCl, Li/HMDS, THF, -78 °C, (ii) Selectfluor[®], MeCN (76% from **11**); (d) NaBH₄, CeCl₃·7H₂O, MeOH, THF, -78 °C (quant); (e) (i) DIBAL-H, CH₂Cl₂, -78 °C, (ii) P(O)(OMe)₂C(N₂)COMe (15), K₂CO₃, MeOH (81% from 14).

Conversion of the ester function of **14** to an ethynyl group was carried out by partial reduction with DIBAL-H, which was followed by treatment with the Ohira–Bestman reagent (15)¹¹ in the presence of K₂CO₃. This procedure gave the desired cyclopentenol **9** in 81% yield in two steps.

2.2. Introduction of thymine base through the Mitsunobu reaction

Introduction of thymine base was next examined (Scheme 2). Compound **9** was reacted with N^3 -benzoylthymine under the conventional Mitsunobu conditions¹² (DIAD and Ph₃P in THF, at rt). After removal of the N^3 -benzoyl group, there were formed three N^1 -alkylated products: one was the desired **16** and others were **17** α and 17β .¹³ The depicted stereochemistry of these products was confirmed by NOE experiments.¹⁴ The fact that **16** was formed through $S_N 2$ process, while 17α and 17β resulted from $S_N 2'$ process came from their HMBC spectra: in the case of 16, the correlation was observed between H-6' protons (δ 3.90 and 3.94) and sp²-hybridized carbon (C-3', δ 136.6); in the cases of 17 α and 17 β , the correlation between H-6' protons and sp³-hybridized carbon (C-3', δ 62.1 and 65.1, respectively) was apparent.

Konno,¹⁵ Okano,¹⁶ and Kim^{7h} have independently reported that fluoroalkyl-substituted allylic alcohols undergo nucleophilic substitution exclusively at remote carbon atom from the electronwithdrawing fluoroalkyl group, presumably as a result of electronic effect of the fluorine atom. We assumed, however, that bulkiness of the substituent at the 4-position of 9 could have a significant influence on the regiochemical bias.

To inspect our assumption, two 4-substituted cyclopentenyl alcohols 18 and 19 (Fig. 2) were prepared from the 4-methoxycarbonyl derivative 14. The 4.4-bis-(tert-butyldiphenylsilyloxy)methyl derivative **18** was prepared by the following sequence of reactions: protection of the allyl alcohol, reduction of the ester group followed by protection of the resulting primary alcohol as TBDPS ether, and finally deprotection of the allyl alcohol. Compound 14 was also converted to the cyano derivative 19: partial reduction of the ester to give the aldehyde, oxime formation, O-acetylation, and elimination.

Figure 2. Compounds 18 and 19

As shown in Scheme 3, upon being reacted with N^3 -benzoylthymine under similar conditions to the case of 9, 18 gave a mixture of **20** and the $S_N 2'$ product (**21**) with a slightly improved S_N2-selectivity. In contrast, the cyano derivative (19) gave exclusively the $S_N 2'$ product (22).¹⁷ The highest $S_N 2$ -selectivity was observed in the reaction of the 4-methoxycarbonyl derivative 14, forming 23 as the sole product in 58% yield.

Scheme 3. Mitsunobu reaction of compounds 18, 19 and 14.

Since methoxycarbonyl group is not seemingly bulky enough, one may consider that the above observed exclusive formation of 23 from 14 is not a consequence of its bulkiness, but of its participation to an allyl cation intermediate as depicted in Figure 3, which could prevent the reaction taking place at the 3-position as well as from concave face. Although such participation is unlikely due to anticipated severe strain, we nevertheless carried out an additional reaction with a hope that some supportive evidence might be obtained for S_N2 mechanism for the formation of 23.

17β: $R^1 = H$, $R^2 =$ thymin-1-yl (20%)

Scheme 2. Mitsunobu reaction of compound 9.

Figure 3.

Thus, the epimeric ally alcohol 24^{18} was prepared from 14 by reacting with *p*-nitrobenzoic acid under the Mitsunobu conditions followed by treating the product with NaOMe (Scheme 4). When 24 was reacted with N^3 -benzoylthymine as described for the case of 9, again only the S_N2 product 25 was isolated in 56% yield after debenzoylation.¹⁹

not to be inhibitory against HIV proliferation (data not shown) (Fig. 4).

3. Conclusion

The synthesis of racemic 5',5'-difluoromethylidene analogue of a promising anti-HIV agent Ed4T has been carried out. Preparation of the difluoro carbocyclic unit **9** was initiated with repeating electrophilic fluorination with Selectfluor[®] to the enolate derived from **11**. The resulting difluoroenone **13** was stereoselectively reduced to the allyl alcohol **14** by employing the Luche reduction. Manipulation of the methoxycarbonyl group of **14** allowed to prepare **9**.

Scheme 4. Preparation and Mitsunobu reaction of compound 24.

2.3. Synthesis of compound 8 and its brief conformational analysis based on X-ray structure

The 4'-methoxycarbonyl carbocyclic nucleoside **23** was reacted with DIBAL-H and then with $P(O)(OMe)_2C(N_2)COMe$ (**15**), by a similar manner described for the transformation of **14** to **9**, to give **16** in 80% yield. The title compound **8** was obtained in a good yield after desilylation with Bu₄NF/THF in the presence of AcOH. The depicted stereochemistry of **8** shown in Figure 4 came from its X-ray crystallographic analysis.

The glycosyl tortional angle (χ =-94.9°) of **8** showed its *anti* (–anticlinal) orientation, which is similar to that of the parent compound stavudine (**4**, χ =-100.8°).²⁰ However, the orientation of the hydroxylmethyl group at the C-4′ position adopted *trans,gauche* (–synclinal, γ =-144.8°) conformation, which was completely different from that of **4** (+synclinal, γ =52.8°). Moreover, the cyclopentene ring of **8** has an envelope type puckering, due to sticking out of the CF₂ group from the cyclopentene plane toward the thymine base: the C-5′ of **8** deviates ca. 0.44 Å from the plane consisting of C1′, C2′, C3′ and C4′. It has been proposed that planarity of the furanose ring of **4** plays one important role for the recognition by cellular kinase.²¹ Presumably due to these conformational differences, **8** was found

Figure 4. ORTEP drawing of compound 8.

Introduction of thymine base to **9** under the Mitsunobu conditions resulted in the formation of the $S_N 2$ product **16** and the two $S_N 2'$ products **17** α and **17** β . It was found that the methoxycarbonyl derivative **14** gave exclusively the $S_N 2$ product **23** in good yield. The title compound **8** was finally prepared from **23** through a series of reactions. A brief conformational analysis of **8** was also carried out based on its X-ray crystallographic data.

4. Experimental

4.1. General

Melting points were determined on a Yanaco micro melting point apparatus, and are uncorrected. ¹H and ¹³C NMR spectra were recorded either at JEOL JNM-GX 400 (400 MHz). Chemical sifts are reported relative to Me₄Si. ¹⁹F NMR spectra were measured at 500 MHz with CFCl₃ as an internal standard. Mass spectra (MS) were taken in FAB mode with *m*-nitrobenzyl alcohol as a matrix on a JEOL JMS-700. Infrared spectra (IR) were recorded on a JASCO FT/ IR-410 spectrophotometer. Column chromatography was carried out on silica gel (Micro Bead Silica Gel PSQ 100B, Fuji Silysia Chemical Ltd). Thin-layer chromatography (TLC) was performed on precoated silica gel plate F₂₅₄ (Merck). When necessary, analytical samples were purified by high performance liquid chromatography (HPLC). HPLC was carried out on a Shimadzu LC-6AD with a Shimpack PREP-SIL (H)[•] KIT column (2×25 cm). THF was distilled from benzophenone ketyl.

4.2. (±)-1-(*tert*-Butyldiphenylsiloxymethyl)-4-oxo-cyclopent-2-enecarboxylic acid methyl ester (11)

To a CH₂Cl₂ (60 mL) solution of **10** (8.5 g, 20.7 mmol) were added MS 4 Å (8 g) and PDC (15.6 g, 41.4 mmol). The resulting mixture was stirred at rt for 40 h. The reaction mixture was then diluted by slow addition of EtOAc (100 mL) and stirred for further 0.5 h. After filtration by a Celite pad, the resulting filtrate was evaporated and the residue was purified by column chromatography (hexane/EtOAc=7/1). This gave **11** (6.6 g, 78%) as an oil. ¹H NMR (CDCl₃) δ 1.03 (9H, s, *t*-Bu), 2.44 (1H, d, *J*_{gem}=18.8, CH₂), 2.84 (1H, d, *J*_{gem}=18.8, CH₂), 3.73 (3H, s, OMe), 3.86 (1H, d, *J*_{gem}=9.6, SiOCH₂), 3.92 (1H, d, *J*_{gem}=9.6, SiOCH₂), 6.23 (1H, d, *J*=5.6, CH=CH), 7.37-7.47 (7H, m, Ph and CH=CH), 7.58-7.62 (4H, m, Ph); ¹³C NMR (CDCl₃) δ 19.2, 26.6, 41.1, 52.6, 58.3, 67.9, 127.8, 130.0, 132.5, 132.6,

134.9, 135.5, 135.6, 162.4, 172.2,206.9: HRFAB-MS m/z 409.1862 (M⁺+H), calcd for C₂₄H₂₉O₄Si (M⁺+H) 409.1835.

4.3. (±)-1-(*tert*-Butyldiphenylsiloxymethyl)-5,5-difluori-4-oxo-cyclopent-2-enecarboxylic acid methyl ester (13)

A mixture of **11** (6.05 g, 14.8 mmol) and TMSCI (3.76 mL, 29.6 mmol) in THF (100 mL) was treated with dropwise addition of LHMDS (1.1 M solution of THF, 27.0 mL, 29.6 mmol) at -78 °C under positive pressure of dry Ar. After being stirred for 0.5 h at same temperature, the mixture was partitioned between EtOAc and saturated aqueous NaHCO₃. The organic layer was dried (Na₂SO₄), filtered, and evaporated. The resulting crude silyl enol ether was dissolved in MeCN (120 mL) and reacted with Selectfluor[®] (10.49.g, 29.6 mmol). After stirring for 24 h at rt, the reaction mixture was partitioned between EtOAc and 1 M HCl. Column chromatography (hexane/ EtOAc=1/1) of the organic layer gave the crude monofluoride 12 (ca. 6.6 g) as an oil. The above procedure was repeated to **12** by using TMSCl (3.76 mL, 29.6 mmol), LHMDS (1.1 M solution of THF, 27.0 mL, 29.6 mmol) and Selectfluor[®] (10.49.g, 29.6 mmol). Column chromatography (hexane/EtOAc=9/1) of the organic layer gave the crude difluoride **13** (5.03 g, 76% from **11**) as an oil. ¹H NMR (CDCl₃) δ 1.00 (9H, s, *t*-Bu), 3.79 (3H, s, OMe), 3.95 (1H, d, *J*_{gem}=9.6, SiOCH₂), 4.13 (1H, d, Jgem=9.6, SiOCH2), 6.52-6.54 (1H, m, CH=CH), 7.38-7.46 (6H, m, Ph), 7.56–7.59 (4H, m, Ph), 7.88–7.91 (1H, m, CH~CH); ¹³C NMR $(CDCl_3) \delta$ 19.2, 26.5, 53.1, 61.6 (t, J_{CF} =19.2), 64.1 (d, J_{CF} =9.6), 113.0 (dd, I_{CF}=271.1 and 255.5), 127.9, 128.0, 130.2, 132.0, 135.5,161.2 (d, $J_{CF}=4.8$), 166.8 (d, $J_{CF}=4.8$), 191.6 (t, $J_{CF}=25.2$); ¹⁹F NMR (CDCl₃) δ -112.8 (d, I_{FF} =283.4), -129.5 (d, I_{FF} =283.4); HRFAB-MS m/z445.1647 (M^+ +H), calcd for C₂₄H₂₇F₂O₄Si (M^+ +H) 445.1640.

4.4. (±)-*r*-1-(*tert*-Butyldiphenylsiloxymethyl)-5,5-difluori-*t*-4-hydroxy-cyclopent-2-enecarboxylic acid methyl ester (14)

To a mixture of **13** (380 mg, 0.85 mmol), CeCl₃·7H₂O (317 mg, 0.85 mmol) and THF (3 mL) in MeOH (20 mL) was added NaBH₄ (76 mg, 1.7 mmol) at $-78 \,^{\circ}\text{C}$. The mixture was stirred at same temperature for 16 h. After treatment with acetone (ca. 3 mL), the mixture was concentrated, partitioned between CH₂Cl₂ and 1 M HCl. Column chromatography (hexane/EtOAc=1/1) of the organic layer gave **14** (379 mg, quant.) as an oil. ¹H NMR (CDCl₃) δ 1.03 (9H, s, *t*-Bu), 2.27 (1H, dd, *J*=11.2 and 2.8, OH), 3.75 (3H, s, OMe), 3.94 (1H, d, Jgem=9.6, SiOCH₂), 3.99 (1H, d, Jgem=9.6, SiOCH₂), 4.76.4.83 (1H, m, CHOH), 6.02-6.06 (1H, m, CH=CH), 6.16-6.19 (1H, m, CH=CH), 7.37–7.46 (6H, m, Ph), 7.60–7.63 (4H, m, Ph); 13 C NMR (CDCl₃) δ 19.2, 26.7, 52.7, 64.0 (d, J_{C,F}=6.0), 64.6 (t, J_{C,F}=21.6), 78.0 (dd, J_{C,F}=30.0 and 20.4), 125.5 (dd, J_{C,F}=268.7 and 255.5), 127.8, 129.9, 130.0, 132.4, 132.6 (d, $J_{C,F}$ =8.4), 133.1 (d, $J_{C,F}$ =8.4), 135.5, 135.6, 169.1; ¹⁹F NMR (CDCl₃) δ -116.9 (d, J_{F,F}=239.8), -120.0 (d, J_{F,F}=239.8); HRFAB-MS m/z 447.1788 (M⁺+H), calcd for C₂₄H₂₉F₂O₄Si (M⁺+H) 447.1803.

4.5. (±)-*t*-4-(*tert*-Butyldiphenylsiloxymethyl)-*c*-4-ethynyl-5,5-difluoro-cyclopent-2-en-*r*-1-ol (9)

To a CH₂Cl₂ (100 mL) solution of **14** (3.5 g, 7.83 mmol) was added DIBAL-H (1.0 M solution in toluene, 23.5 mL, 23.5 mmol) dropwise over 1 h at -78 °C. The mixture was stirred for further 0.5 h at same temperature. The reaction mixture was partitioned between CH₂Cl₂ and 1 M HCl. The crude aldehyde was obtained after evaporation of the organic layer. A solution of this aldehyde in MeOH (90 mL) was treated with K₂CO₃ (3.25 g, 23.5 mmol) followed by MeC(O)C(N₂)P(O)(OMe)₂ (3.76 g, 19.6 mmol). The resulting mixture was stirred for 20 h at rt. Partition of the reaction mixture between CH₂Cl₂ and saturated aqueous NH₄Cl was followed by column chromatography (hexane/EtOAc=2/1) of the organic layer. This gave **9** (2.59 g, 81%) as an oil. IR (neat) 2090 cm⁻¹

(C=C); ¹H NMR (CDCl₃) δ 1.03 (9H, s, t-Bu), 2.15 (1H, dd, *J*=10.9 and 4.0, OH), 2.35 (1H, s, C=CH), 3.65 (1H, dd, *J*=10.4 and 2.9, SiOCH₂), 3.98 (1H, d, *J*=10.4, SiOCH₂), 4.92–4.97 (1H, m, CHOH), 5.82–5.83 (1H, m, CH=CH), 6.01–8.02 (1H, m, CH=CH), 7.38–7.46 (6H, m, Ph), 7.62–7.66 (4H, m, Ph); ¹³C NMR (CDCl₃) δ 19.2, 26.7, 53.9 (dd, *J*_{CF}=24.0 and 20.4), 64.9 (d, *J*_{CF}=4.8), 74.7, 77.6 (dd, *J*_{CF}=30.0 and 21.6), 78.3 (d, *J*_{CF}=7.2), 125.3 (dd, *J*_{CF}=269.9 and 256.7), 127.8, 129.8, 129.9, 132.3, 132.5, 133.2, 133.3, 135.5, 135.7; ¹⁹F NMR (CDCl₃) δ –113.1 (d, *J*_{FF}=228.9), –123.1 (d, *J*_{FF}=228.9); HRFAB-MS *m/z* 413.1751 (M⁺+H), calcd for C₂₄H₂₇F₂O₂Si (M⁺+H) 413.1748.

4.6. The Mitsunobu reaction of 9

To a THF (3 mL) solution of Ph₃P (291 mg, 1.11 mmol) was added DIAD (219 μ L, 1.11 mmol) at 0 °C. After stirring for 10 min, a THF (5 mL) solution of **9** (150 mg, 0.37 mmol) and N³-benzoylthymine (256 mg, 1.11 mmol) were added at -40 °C. The reaction mixture was allowed to warm to rt, and stirred for further 50 h at ambient temperature. The mixture was partitioned between Et₂O and H₂O. After evaporation of the organic layer, the residue was treated with NH₃/MeOH (30 mL) at -4 °C for 12 h. After evaporation, the residue was carefully purified by column chromatography (hexane/Et₂O=2/1 to 1/4). This gave **16** (50 mg, 26% as a solid), **17** α (40 mg, 21%, as a foam) and **17** β (39 mg, 20% as a foam).

4.7. Physical data for 16

IR (neat) 2080 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.08 (9H, s, *t*-Bu), 1.83 (3H, s, Me), 2.44 (1H, s, C=CH), 3.90 (1H, d, *J*=10.4, SiOCH₂), 3.94 (1H, d, *J*=10.4, SiOCH₂), 5.81–5.83 (1H, m, CH=CH), 6.08–6.13 (1H, m, NCH), 6.16–6.19 (1H, m, CH=CH), 6.81 (1H, m, H-6), 7.36– 7.47 (6H, m, Ph), 7.67–7.70 (4H, m, Ph), 8.39 (1H, br, NH); ¹³C NMR (CDCl₃) δ 12.3, 19.4, 26.6, 54.0 (dd, *J*_{CF}=26.4 and 21.6), 62.7 (dd, *J*_{CF}=30.0 and 19.2), 64.1 (d, *J*_{CF}=9.6), 74.9, 78.1 (d, *J*_{CF}=4.8), 110.9, 125.4 (dd, *J*_{CF}=272.3 and 264.0), 126.9 (d, *J*_{CF}=7.2), 127.8, 129.9, 132.7, 132.8, 135.6, 136.6, 137.0, 150.6, 163.2; ¹⁹F NMR (CDCl₃) δ –106.3 (d, *J*_{FF}=228.9), –119.2 (d, *J*_{FF}=228.9); HRFAB-MS *m*/*z* 521.2022 (M⁺+H), calcd for C₂₉H₃₁F₂N₂O₃Si (M⁺+H) 521.2072.

4.8. Physical data for 17α

IR (neat) 2090 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.03 (9H, s, *t*-Bu), 1.91 (3H, d, *J*=1.6, Me), 2.32 (1H, s, C=CH), 4.03 (2H, s, SiOCH₂), 6.11–6.13 (1H, m, NCH), 6.30–6.31 (1H, m, CH=CH), 6.39–6.41 (1H, m, CH=CH), 6.89 (1H, q, *J*=1.6, H-6), 7.37–7.48 (6H, m, Ph), 7.65– 7.72 (4H, m, Ph), 9.21 (1H, br, NH); ¹³C NMR (CDCl₃) δ 12.5, 19.3, 26.6, 53.5 (dd, *J*_{C,F}=22.8 and 19.2), 62.1 (d, *J*_{C,F}=4.8), 65.6 (d, *J*_{C,F}=7.2), 75.5 (d, *J*_{C,F}=6.0), 78.5, 110.4, 127.4 (dd, *J*_{C,F}=255.5 and 249.5), 127.7, 127.8, 129.8, 129.9, 132.3, 132.4, 133.7 (t, *J*_{C,F}=27.6), 135.6, 137.1, 137.2 (t, *J*_{C,F}=8.4), 151.1, 163.9; ¹⁹F NMR (CDCl₃) δ –78.2 (d, *J*_{F,F}=261.6), –110.2 (d, *J*_{F,F}=261.6); HRFAB-MS *m/z* 521.2048 (M⁺+H), calcd for C₂₉H₃₁F₂N₂O₃Si (M⁺+H) 521.2072.

4.9. Physical data for 17β

IR (neat) 2070 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.04 (9H, s, *t*-Bu), 1.68 (3H, d, *J*=1.2, Me), 2.45 (1H, s, C=CH), 3.75 (2H, s, SiOCH₂), 6.00–6.07 (1H, m, NCH), 6.28–6.30 (1H, m, CH=CH), 6.33–6.35 (1H, m, CH=CH), 6.79 (1H, q, *J*=1.2, H-6), 7.33–7.36 (4H, m, Ph), 7.39–7.43 (2H, m, Ph), 7.54–7.57 (2H, m, Ph), 7.61–7.63 (2H, m, Ph), 8.82 (1H, br, NH); ¹³C NMR (CDCl₃) δ 12.3, 19.2, 26.7, 52.4 (t, *J*_{C,F}=22.8), 61.7 (d, *J*_{C,F}=7.2), 65.1, 74.3, 79.9, 110.8, 127.6, 127.7 (dd, *J*_{C,F}=279.5 and 223.1), 127.8, 129.8, 129.9, 132.3, 132.4, 132.6 (t, *J*_{C,F}=26.4), 135.5, 135.7, 136.5, 137.4 (t, *J*_{C,F}=9.6), 150.7, 163.1; ¹⁹F NMR (CDCl₃) δ –106.3 (d, *J*_{F,F}=228.9), –119.3 (d, *J*_{F,F}=228.9);

HRFAB-MS m/z 521.2081 (M⁺+H), calcd for C₂₉H₃₁F₂N₂O₃Si (M⁺+H) 521.2072.

4.10. (±)-4,4-Bis-(*tert*-Butyldiphenylsiloxymethyl)-5,5difluoro-cyclopent-2-en-1-ol (18)

To a mixture of **14** (350 mg, 0.78 mmol) and PPTS (20 mg, 0.08 ooml) in CH₂Cl₂ (3 mL) was added 2,3-dihydrofuran (77 µL, 1.02 mmol). The resulting mixture was stirred for 0.5 h at rt. The mixture was partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. The organic layer was evaporated and the residue was dissolved in THF (5 mL). The resulting THF solution was treated with LiAlH₄ (30 mg, 0.78 mmol) at 0 °C for 0.5 h with stirring. The reaction mixture was quenched by adding EtOAc and H₂O, and then filtered through a Celite pad. The filtrate was evaporated and dissolved in MeCN (5 mL). A mixture of this solution, imidazole (106 mg, 1.56 mmol) and TBDPSCl (244 µL, 0.94 mmol) was stirred for 1 h. The reaction mixture was partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. The organic layer separated was evaporated, and the residue was treated with PPTS (20 mg, 0.08 mmol) in MeOH (8 mL) at rt for 3 h. After quenching with Et₃N (2 mL), the mixture was evaporated and purified by column chromatography (hexane/EtOAc=2/1). This gave 18 (206 mg, 40% from **14**) as an oil. ¹H NMR (CDCl₃) δ 0.93 (9H, s, *t*-Bu), 1.03 (9H, s, *t*-Bu), 3.17 (1H, d, *J*=10.4, OH), 3.68–3.76 (3H, m, SiOCH₂×3), 3.93 (1H, d, *J*=10.4, SiOCH₂), 4.50-4.57 (1H, m, H-4), 5.84-5.86 (1H, m, CH=CH), 6.05-6.15 (1H, m, CH=CH), 7.28-7.32 (4H, m, Ph), 7.36-7.46 (8H, m, Ph), 7.50–7.53 (4H, m, Ph), 7.62–7.66 (4H, m, Ph); ¹³C NMR (CDCl₃) δ 19.1, 19.2, 26.6, 26.8, 58.5 (t, $J_{CF}=21.6$), 62.5 (d, *I*_{CF}=12.0), 63.4 (d, *I*_{CF}=6.0), 77.5 (dd, *I*_{CF}=35.2 and 21.2), 127.7, 126.4 (dd, J_{CF}=265.1 and 259.1), 127.9, 129.6, 129.7, 129.9, 130.0, 132.1, 132.3, 132.9, 134.9 (d, *J*_{CF}=5.8), 135.4, 135.5, 135.6, 135.7; ¹⁹F NMR (CDCl₃) δ -117.0 (d, *J*_{EF}=239.8), -124.4 (d, *J*_{EF}=239.8); HRFAB-MS m/z 657.3032 (M⁺+H), calcd for C₃₉H₄₇F₂O₃Si₂ (M⁺+H) 657.3032.

4.11. (±)-*t*-4-(*tert*-Butyldiphenylsiloxymethyl)-*c*-4-cyano-5,5difluoro-cyclopent-2-en-*r*-1-ol (19)

A CH₂Cl₂ (16 mL) solution of 14 (500 g, 1.12 mmol) was treated with DIBAL-H (1.0 M solution in toluene, 3.36 mL, 3.36 mmol) dropwise over 1 h at -78 °C and then stirred for 0.5 h at same temperature. The resulting aldehyde obtained by partition (CH₂Cl₂/ 1 M HCl) of the reaction mixture was dissolved in pyridine (15 mL) and reacted with $NH_2OH \cdot HCl (1.56 \text{ g}, 22.4 \text{ mmol})$ at rt for 12 h. The oxime obtained by partition (CH₂Cl₂/0.5 M HCl) of the reaction mixture was acetylated with Ac₂O (317 μ L, 3.36 mmol) in MeCN (20 mL) in the presence of DMAP (343 mg, 2.8 mmol) and *i*-Pr₂NEt (585 uL, 3.36 mmol) for 1 h. The diacetate obtained by partition (CH₂Cl₂/1 M HCl) was subjected to elimination by reacting with NaOAc (82 mg, 1.0 mmol) in AcOH (18 mL) at 100 °C for 3 h. The resulting product obtained by partition (CH₂Cl₂/saturated aqueous NaHCO₃) was treated with NH₃/MeOH (10 mL) below 0 °C overnight. The requisite cyano derivative (19) was isolated from the reaction mixture by column chromatography (hexane/EtOAc=3/1). This gave **19** (244 mg, 53% from **14**) as an oil. IR (neat) 2080 cm⁻¹ $(C \equiv N)$; ¹H NMR (CDCl₃) δ 1.08 (9H, s, *t*-Bu), 3.84 (1H, d, $J_{gem} = 10.4$, SiOCH₂), 3.94 (1H, dd, J=10.4 and 0.8, SiOCH₂), 4.83-4.87 (1H, m, H-4), 5.91-5.94 (1H, m, CH=CH), 6.13-6.17 (1H, m, CH=CH), 7.39-7.49 (6H, m, Ph), 7.60–7.65 (4H, m, Ph); ¹³C NMR (CDCl₃) δ 19.2, 26.6, 54.6 (dd, J_{C,F}=25.2 and 20.4), 63.3 (d, J_{C,F}=6.0), 77.0 (dd, J_{C,F}=31.2 and 20.4), 115.2 (d, J_{CF}=4.8), 123.9 (dd, J_{CF}=269.9 and 260.3), 128.1, 129.5, 130.2, 130.3, 131.6, 131.8, 135.5, 135.6, 135.7; ¹⁹F NMR (CDCl₃) δ -111.9 (d, J_{EF}=239.8), -120.2 (d, J_{EF}=239.8); HRFAB-MS m/z 414.1679 (M⁺+H), calcd for $C_{23}H_{26}F_2NO_2Si$ (M⁺+H) 414.1701.

4.12. The Mitsunobu reaction of 18: formation to 20 and 21

Compound **18** (360 mg, 0.55 mmol) was reacted as described above for **9**. After purification by a preparative TLC (CHCl₃ three times elution), compound **20** (172 mg, 41%, foam) and **21** (66 mg, 16%, foam) were obtained.

4.12.1. Physical data for 20

¹H NMR (CDCl₃) δ 0.96 (9H, s, *t*-Bu), 1.06 (9H, s, *t*-Bu), 1.86 (3H, d, J=0.4, 5-Me), 3.77 (2H, s, SiOCH₂), 3.83 (1H, d, J_{gem} =10.0, SiOCH₂), 3.99 (1H, d, J_{gem} =10.0, SiOCH₂), 5.79–5.80 (1H, m, CH=CH), 6.04–6.07 (1H, m, CH=CH), 6.07–6.13 (1H, m, CH-N), 6.83 (1H, q, J=0.4, H-6), 7.26–7.45 (12H, m, Ph), 7.54–7.57 (4H, m, Ph), 7.61–7.67 (4H, m, Ph), 8.45 (1H, br, NH); ¹³C NMR (CDCl₃) δ 12.4, 19.1, 19.2, 26.6, 59.5 (t, $J_{C,F}$ =20.2), 61.5 (d, $J_{C,F}$ =10.8), 63.4 (d, $J_{C,F}$ =9.6), 63.9 (dd, $J_{C,F}$ =30.0 and 20.4), 110.3, 127.3 (d, $J_{C,F}$ =8.4), 127.6 (dd, $J_{C,F}$ =267.5 and 261.5), 127.7, 127.8, 129.7, 129.8, 129.9, 132.5, 132.6, 132.7, 132.8, 135.5, 135.6, 135.7, 137.4, 137.6, 150.8, 163.6; ¹⁹F NMR (CDCl₃) δ –114.9 (d, $J_{F,F}$ =239.8), –116.1 (d, $J_{F,F}$ =239.8); HRFAB-MS *m*/*z* 765.3368 (M⁺+H), calcd for C₄₄H₅₁F₂N₂O₄Si₂ (M⁺+H) 765.3355.

4.12.2. Physical data for **21**

¹H NMR (CDCl₃) δ 0.91 (9H, s, *t*-Bu), 1.05 (9H, s, *t*-Bu), 1.72 (3H, d, J=0.8, 5-Me), 3.41 (1H, d, $J_{gem}=10.8, SiOCH_2$), 3.67 (1H, d, $J_{gem}=10.8, SiOCH_2$), 3.75 (1H, d, $J_{gem}=10.4, SiOCH_2$), 4.23 (1H, d, $J_{gem}=10.4, SiOCH_2$), 6.07–6.09 (1H, m, CH–N), 6.18–6.19 (1H, m, CH=CH), 6.29–6.31 (1H, m, CH=CH), 6.74 (1H, q, J=0.8, H-6), 7.21–7.33 (4H, m, Ph), 7.35–7.52 (12H, m, Ph), 7.65–7.74 (4H, m, Ph), 8.03 (1H, br, NH); ¹³C NMR (CDCl₃) δ 12.4, 19.0, 19.3, 26.6, 26.7, 54.2 (t, $J_{C,F}=19.2$), 59.6 (d, $J_{C,F}=9.6$), 61.2, 63.9 (d, $J_{C,F}=9.6$), 110.3, 127.5, 127.7, 127.8, 129.7, 129.8, 130.3 (dd, $J_{C,F}=249.9$ and 240.5), 132.1, 132.5, 132.7, 134.2 (t, $J_{C,F}=28.8$), 135.4, 135.5, 135.6, 135.7, 136.9, 137.7 (t, $J_{C,F}=9.6$), 150.5, 162.9; ¹⁹F NMR (CDCl₃) δ –90.1 (d, $J_{F,F}=272.5$), −110.2 (d, $J_{F,F}=272.5$); HRFAB-MS m/z 765.3368 (M⁺+H), calcd for C₄₄H₅₁F₂N₂O₄Si₂ (M⁺+H) 765.3355.

4.13. The Mitsunobu reaction of 19: formation to 22

Compound **19** (194 mg, 0.48 mmol) was reacted as described above for **9**. After purification by a preparative TLC ($CH_2Cl_2/AcOEt=3/1$), compound **22** (138 mg, 55%) was obtained as a foam.

4.13.1. Physical data for 22

IR (neat) 2250 cm⁻¹ (C=N); ¹H NMR (CDCl₃) δ 1.06 (9H, s, *t*-Bu), 1.94 (3H, d, *J*=1.2, 5-Me), 4.06 (1H, d, *J*_{gem}=10.0, SiOCH₂), 4.13 (1H, d, *J*_{gem}=10.0, SiOCH₂), 6.00–6.02 (1H, m, CH–N), 6.32–6.33 (1H, m, CH=CH), 6.39–6.40 (1H, m, CH=CH), 6.90 (1H, q, *J*=1.2, H-6), 7.41–7.46 (6H, m, Ph), 7.65–7.70 (4H, m, Ph), 8.73 (1H, br, NH); ¹³C NMR (CDCl₃) δ 12.6, 19.2, 26.5, 55.6 (dd, *J*_{CF}=26.4 and 18.0), 61.1, 63.2 (d, *J*_{CF}=8.4), 112.2, 113.7 (d, *J*_{CF}=4.8), 126.2 (t, *J*_{CF}=256.7), 127.9, 130.1, 131.7, 131.8, 132.7 (t, *J*_{CF}=26.4), 135.6, 137.2 (t, *J*_{CF}=9.6), 150.6, 163.0. ¹⁹F NMR (CDCl₃) δ –78.7 (d, *J*_{FF}=261.6), –105.5 (d, *J*_{FF}=261.6); HRFAB-MS *m*/*z* 522.2049 (M⁺+H), calcd for C₂₈H₃₀F₂N₃O₃Si (M⁺+H) 522.2025.

4.14. The Mitsunobu reaction of 14: formation to 23

To a THF (7 mL) solution of Ph₃P (583 mg, 2.22 mmol) was added DIAD (440 μ L, 2.22 mmol) at 0 °C. After stirring for 10 min, a THF (15 mL) solution of **14** (330 mg, 0.74 mmol) and N^3 -benzoylthymine (511 mg, 2.22 mmol) was added dropwise at -40 °C to the above mixture. The whole mixture was allowed to warm to rt, and stirred for 50 h at rt. The reaction mixture was partitioned between Et₂O and H₂O. After evaporation of the organic layer, the residue was treated with NaOMe (1.0 M solution of MeOH, 7.4 mL) at rt for 2 h. The resulting mixture was partitioned between CH₂Cl₂

and 1 M HCl. Column chromatography (hexane/EtOAc=1/1) of the organic layer gave **23** (239 mg, 58% from **14**) as a solid.

4.14.1. Physical data for 23

Mp 207–211 °C; ¹H NMR (CDCl₃) δ 1.05 (9H, s, *t*-Bu), 1.75 (3H, d, *J*=0.8, 5-Me), 3.79 (1H, d, *J*_{gem}=10.0, SiOCH₂), 3.80 (3H, s, OMe), 4.30 (1H, d, *J*_{gem}=10.0, SiOCH₂), 5.94–5.99 (2H, m, CH=CH and CH–N), 6.45–6.47 (1 h, m, CH=CH), 6.72 (1H, q, *J*=0.8, H-6), 7.39–7.48 (6H, m, Ph), 7.63–7.67 (4H, m, Ph), 8.05 (1H, br, NH); ¹³C NMR (CDCl₃) δ 12.4, 19.3, 26.6, 53.0, 63.5 (d, *J*_{C,F}=12.0), 64.1 (dd, *J*_{C,F}=34.8 and 19.2), 65.8 (dd, *J*_{C,F}=34.8 and 21.5), 111.0, 124.8 (t, *J*_{C,F}=267.5), 127.6 (d, *J*_{C,F}=7.2), 127.9, 130.1, 132.3, 132.7, 135.5, 136.2, 137.2, 150.5, 162.9, 168.0; ¹⁹F NMR (CDCl₃) δ –102.0 (d, *J*_{F,F}=239.8), –115.7 (d, *J*_{F,F}=239.8); HRFAB-MS *m*/*z* 555.2137 (M⁺+H), calcd for C₂₉H₃₃F₂N₂O₅Si (M⁺+H) 555.2127.

4.15. (±)-*r*-1-(*tert*-Butyldiphenylsiloxymethyl)-5,5-difluori-*c*-4-hydroxy-cyclopent-2-enecarboxylic acid methyl ester (24)

To a mixture of **14** (780 mg, 1.77 nnol), Ph₃P (698 mg, 2.66 mmol) and 4-nitrobenzoic acid (444 mg, 2.66 mmol) in THF (15 mL) was dropwise added DIAD (524 µL, 2.66 mmol) at 0 °C. After 24 h stirring at ambient temperature of the mixture, this was partitioned between aq NaHCO₃ and CH₂Cl₂. Short column chromatography (hexane/AcOEt=7/1) of the organic layer gave the crude benzoate (ca. 978 mg). The benzoate was dissolved in MeOH (40 mL) and treated with NaOMe (478 mg, 8.85 mmol). After 6 h stirring of the resulting mixture, this was partitioned between 0.5 N HCl and CH₂Cl₂. Column chromatography (hexane/AcOEt=1/1) of the organic layer gave 24 (587 mg, 75%) as an oil. ¹H NMR (CDCl₃) δ 1.02 (9H, s, *t*-Bu), 2.97 (1H, d, *J*=10.0, OH), 3.69 (3H, s, OMe), 3.78 (1H, d, J_{gem}=10.0, SiOCH₂), 4.09 (1H, d, J_{gem}=10.0, SiOCH₂), 4.50-4.54 (1H, m, CHOH), 6.15-6.23 (2H, m, CH=CH), 7.38-7.45 (6H, m, Ph), 7.61–7.64 (4H, m, Ph); 13 C NMR (CDCl₃) δ 19.1, 26.7, 52.7, 63.9, 64.7 (t, J_{CF}=24.0), 76.6 (dd, J_{CF}=37.2 and 20.4), 124.2 (dd, J_{CF}=271.1 and 254.3), 128.0, 130.1, 130.2, 131.7, 131.9, 132.9, 134.4 (d, J_{CF}=4.8), 135.5, 135.7, 168.4; ¹⁹F NMR (CDCl₃) δ –107.2 (d, $J_{F,F}$ =239.8), –124.7 (d, $J_{EF}=239.8$); HRFAB-MS m/z 447.1778 (M⁺+H), calcd for $C_{24}H_{29}F_2O_4Si(M^++H)$ 447.1803.

4.16. The Mitsunobu reaction of 24: formation to 25

Compound **24** (249 mg, 0.57 mmol) was reacted as described above for **9**. After purification by a preparative TLC ($CH_2Cl_2/AcOEt=1/1$), compound **25** (180 mg, 57%) was obtained as a foam.

4.16.1. *Physical data for* **25**

¹H NMR (CDCl₃) δ 1.05 (9H, s, *t*-Bu), 1.91 (4H, d, *J*=1.2, Me), 3.76 (3H, s, OMe), 3.99 (1H, d, *J*_{gem}=10.0, SiOCH₂), 4.07 (1H, d, *J*_{gem}=10.0, SiOCH₂), 5.85–5.95 (1H, m, CH=CH), 6.00–6.05 (1H, m, CH–N), 6.45–6.47 (1H, m, CH=CH), 6.91 (1H, q, *J*=1.2, H-6), 7.39–7.49 (6H, m, Ph), 7.60–7.63 (4H, m, Ph), 8.48 (1H, br, NH); ¹³C NMR (CDCl₃) δ 12.4, 19.2, 26.6, 52.8, 62.9 (dd, *J*_{CF}=28.8 and 18.0), 64.5 (dd, *J*_{CF}=9.6 and 3.6), 65.2 (t, *J*_{CF}=21.6), 110.9, 125.5 (dd, *J*_{CF}=273.5 and 259.1), 127.5 (d, *J*_{CF}=8.4),127.8, 127.9, 130.0, 132.2, 135.5, 135.6, 136.2, 137.2 (d, *J*_{CF}=3.6), 150.8, 163.6, 168.0 (d, *J*_{CF}=6.0); ¹⁹F NMR (CDCl₃) δ –108.7 (d, *J*_{FF}=239.8), -115.4 (d, *J*_{FF}=239.8); HRFAB-MS *m*/z 555.2120 (M⁺+H), calcd for C₂₉H₃₃F₂N₂O₅Si (M⁺+H) 555.2127.

4.17. Conversion of 23 to 16

Compound **23** (555 mg, 1.0 mmol) was converted to **16** by the similar procedure described for the conversion of **14** to **9**. After purification of the reaction mixture by column chromatography

(hexane/EtOAc=2/3), **16** (415 mg, 80% from **23**) was obtained as a solid.

4.18. (±)-1-(*t*-4-Ethynyl-5,5-difluoro-*c*-4-hydroxymethyl-cyclopent-2-en-*r*-1-yl)-thymine (8)

To a stirred solution of 23 (415 mg, 0.8 mmol) in THF (8 mL) containing AcOH (57 µL, 0.8 mmol) was added Bu₄NF (1.0 M solution in THF, 800 µL, 0.8 mmol) at 0 °C. The resulting mixture was stirred for 17 h at rt, and then evaporated. Column chromatography $(CH_2Cl_2/EtOH=20/1)$ of the residue gave **8** (192 mg, 85%) as a solid, which was recrystallized from acetone/1,2-dichloroethane: mp >224 °C (dec); IR (KBr) 2120 cm⁻¹ (C \equiv C); ¹H NMR (CD₃OD) δ 1.83 (3H, d, *J*=1.2, 5-Me), 2.89 (1H, d, *J*_{C,F}=1.2, C≡CH), 3.78 (1H, dd, *J*_{gem}=11.5, *J*_{C,F}=1.2, CH₂OH), 3.84 (1H, dd, *J*_{gem}=11.5, *J*_{C,F}=1.7, CH₂OH) 5.80-5.83 (1H, m, H-1'), 5.98-6.01 (1H, m, CH=CH), 6.17-6.20 (1H, m, CH=CH), 7.29 (1H, q, J=1.2, H-6); 13 C NMR (CD₃OD) δ 12.3, 56.2 (dd, J_{CF}=26.4 and 21.2), 64.4 (d, J_{CF}=8.4), 65.2 (dd, J_{CF}=40.0 and 20.4), 76.6, 78.7 (d, J_{CF}=6.0), 110.6, 126.0 (t, J_{CF}=265.1), 128.2 (d, $J_{C,F}=7.2$), 138.7, 139.9, 153.0, 166.4; ¹⁹F NMR (DMSO- d_6) δ –117.4 (d, $J_{EF}=239.8$), -96.6 (d, $J_{EF}=239.8$); HRFAB-MS m/z 283.0879 (M⁺+H), calcd for C₁₃H₁₃F₂N₂O₃ (M⁺+H) 283.0894. Anal. Calcd for C13H12F2N2O3: C, 55.32; H, 4.29; N, 9.93. Found: C, 55.18; H, 4.12; N, 9.80.

Acknowledgements

Financial support from the Japan Society for the Promotion of Science (KAKENHI, Grant No. 19590106 to K.H.) is gratefully acknowledged. The authors are also grateful to Ms. K. Shiohara and Ms. Y. Odanaka (Center for Instrumental Analysis, Showa University) for technical assistance with NMR, MS and elemental analysis.

References and notes

- Maag, H.; Rydzewski, R. M.; McrRoberts, M. J.; Crawford-Ruth, D.; Verheyden, J. P. H.; Prisbe, E. J. J. Med. Chem. 1992, 35, 1440.
- O-Yang, C.; Wu, H. Y.; Fraser-Smith, E. B.; Walker, K. A. M. Tetrahedron Lett. 1992, 33, 37.
- (a) Sugimoto, I.; Shuto, S.; Mori, S.; Shigeta, S.; Matsuda, A. Bioorg. Med. Chem. Lett. 1999, 9, 385; (b) Nomura, M.; Shuto, S.; Tanaka, M.; Sasaki, T.; Mori, S.; Shigeta, S.; Matsuda, A. J. Med. Chem. 1999, 42, 2901; (c) Ohrui, H.; Kohgo, S.; Kitano, K.; Ssakata, S.; Kodama, E.; Yoshimura, S.; Matsuoka, M.; Shigeta, S.; Mitsuya, H. J. Med. Chem. 2000, 43, 4516; (d) Kodama, E.; Kohgo, S.; Kitano, K.; Machida, H.; Gatanaga, H.; Shigeta, S.; Matsuoka, M.; Ohrui, H.; Mitsuya, H. Antimicrob. Agents Chemother. 2001, 45, 1539.
- (a) Haraguchi, K.; Takeda, S.; Tanaka, H.; Nitannda, T.; Baba, M.; Dutschman, G. E.; Cheng, Y.-C. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3775; (b) Dutschman, G. E.; Grill, S. P.; Gullen, E. A.; Haraguchi, K.; Takeda, S.; Tanaka, H.; Baba, M.; Cheng, Y.-C. *Antimicrob. Agents Chemother.* **2004**, *48*, 1640; (c) Nitanda, T.; Wang, X.; Kumamoto, H.; Haraguchi, K.; Tanaka, H.; Cheng, Y.-C.; Baba, M. *Antimicrob. Agents Chemother.* **2005**, *49*, 3355; (d) Yang, G.; Dutschman, G. E.; Wang, C.-J.; Tanaka, H.; Baba, M.; Anderson, K. S.; Cheng, Y.-C. *Antiviral Res.* **2007**, *73*, 185.
- Kumamoto, H.; Haraguchi, K.; Tanaka, H.; Nitannda, T.; Baba, M.; Dutschman, G. E.; Cheng, Y.-C. Nucleosides Nucleotides Nucleic Acids 2005, 24, 73.
- Kumamoto, H.; Nakai, T.; Haraguchi, K.; Nakamura, K. T.; Tanaka, H.; Baba, M.; Cheng, Y.-C. J. Med. Chem. 2006, 49, 7861.
- (a) Blackburn, G. M.; England, D. A.; Kolkmann, F. J. Chem. Soc., Chem. Commun. 1981, 930; (b) Blackburn, G. M.; Brown, D.; Martin, S. J. J. Chem. Res., Synop. 1985, 92; (c) Blackburn, G. M.; Eckstein, F.; Kent, D. E.; Peree, T. D. Nucleosides Nucleotides 1985, 4, 165; (d) Blackburn, G. M.; Kent, D. E. J. Chem. Soc., Perkin Trans. 1 1986, 913; (e) Blackburn, G. M.; Peree, T. D.; Rashid, A.; Bisbal, C.; Lebleu, B. Chem. Soc., Perkin Trans. 1 1987, 181; (g) Yang, Y.-Y; Meng, W.-D.; Qing, F. L. Org. Lett. 2004, 6, 4257; (h) Yang, Y.-Y; Xu, J.; You, Z.-W.; Xu, X.; Qiu, X.-L.; Qing, F. L. Org. Lett. 2007, 9, 5437; (i) Recently, we reported the synthesis of 8 as a communication Nucleic Acids Symp. Ser. 2008, 52, 809.
- 8. Lai, G. S.; Pez, G. P.; Syvret, R. G. Chem. Rev. 1996, 96, 1737.
- 9. Luche, J. L.; Genal, A. L. J. Am. Chem. Soc. 1979, 101, 5848.
- 10. NOE data for 14: H-4/CH2OTBDPS (2.0%).
- 11. Ohira, S. Synth. Commun. 1989, 19, 561.
- 12. Mitusunobu, O. Synthesis 1981, 1.

- 13. In this reaction, no O_2 -alkylated product was formed, which is usually the case under the present reaction conditions: (a) Ludek, O. K.; Meier, C. Synlett 2005, 3145; (b) Ludek, O. K.; Meier, C. Synlett **2006**, 324.
- 14. The stereochemistry of **16**, 17α and 17b were determined by NOE experiments; NOE data for **16** measured in CDCl₃: H-6/H-6' (1.5%). NOE data for **17** α : H-6'/ H-3' (5.1%); H-6/C≡CH (0.5%). NOE data for **17b**: H-3'/C≡CH (0.5%).
- 15. (a) Konno, T.; Ishihara, T.; Yamanaka, H. Tetrahedron Lett. 2000, 41, 8467; (b) Konno, T.; Daitoh, T.; Ishihara, T.; Yamanaka, H. *Tetrahedron: Asymmetry* **2001**, 12, 2743; (c) Konno, T.; Nagata, K.; Ishihara, T.; Yamanaka, H. J. Org. Chem. 2002, 67, 1768; (d) Konno, T.; Takehana, T.; Ishihara, T.; Yamanaka, H. Org. Biomol. *Chem.* **2004**, *2*, 93; (e) Konno, T.; Takehana, T.; Mishima, M.; Ishihara, T. J. Org. Chem. 2006, 71, 3545.
- 16. Okano, T.; Matsubara, H.; Kusukawa, T.; Fujita, M. J. Organomet. Chem. 2003, 676, 43.
- 17. NOE data for **22** measured in CDCl₃: H-6'/H-3' (5.6%).
- 18. NOE for 24 measured in CDCl₃: OH/CH₂OTBDPS (0.4%); HMBC for 24: CH₂OTBDPS/C-3.
- NOE for 25 measured in CDCl₃: H-6'/OMe (0.2%); HMBC for 25: CH₂OTBDPS/C-3'.
 Viterbo, D.; Milanesio, M.; Pomes-Hernandez, R.; Rodriguez-Tanty, C.; Cola-Gonzalez, I.; Sablon-Carrazana, M.; Duque-Rodriguez, J. Acta Crystallogr., Sect. C 2000, 56, 580.
- 2. Choi, Y.; George, C.; Comin, M. J.; Barchi, J. J., Jr.; Kim, H. S.; Jacobson, K. A.; Balzarini, J.; Mitsuya, H.; Boyer, P. L.; Hughes, S. H.; Marquez, V. E. J. Med. Chem. **2003**, 46, 3292.